

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

PREPARATION OF SILICALITE PERVAPORATION MEMBRANE WITH ETHANOL PERMSELECTIVITY BY A 2-STEP HYDROTHERMAL SYNTHESIS

H. Matsuda^a; H. Yanagishita^b; D. Kitamoto^b; K. Haraya^b; T. Nakane^b; T. Takada^a; Y. Idemoto^a; N. Koura^a; T. Sano^c

^a Science University of Tokyo, Noda, Chiba, Japan ^b National Institute of Materials and Chemical Research, Tsukuba, Ibaraki, Japan ^c Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa, Japan

Online publication date: 30 November 2001

To cite this Article Matsuda, H. , Yanagishita, H. , Kitamoto, D. , Haraya, K. , Nakane, T. , Takada, T. , Idemoto, Y. , Koura, N. and Sano, T.(2001) 'PREPARATION OF SILICALITE PERVAPORATION MEMBRANE WITH ETHANOL PERMSELECTIVITY BY A 2-STEP HYDROTHERMAL SYNTHESIS', *Separation Science and Technology*, 36: 15, 3305 – 3310

To link to this Article: DOI: 10.1081/SS-100107904

URL: <http://dx.doi.org/10.1081/SS-100107904>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

PREPARATION OF SILICALITE PERVAPORATION MEMBRANE WITH ETHANOL PERMSELECTIVITY BY A 2-STEP HYDROTHERMAL SYNTHESIS

H. Matsuda,¹ H. Yanagishita,^{2,*} D. Kitamoto,²
K. Haraya,² T. Nakane,² T. Takada,¹ Y. Idemoto,¹
N. Koura,¹ and T. Sano³

¹Science University of Tokyo, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan

²National Institute of Materials and Chemical Research,
1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

³Japan Advanced Institute of Science and Technology,
Tatsunokuchi, Ishikawa 923-1292, Japan

ABSTRACT

The effect of a 2-step hydrothermal synthesis on the formation of silicalite membrane was investigated. Pervaporation performance of the membrane after the 2nd synthesis depended on its compactness after the 1st synthesis. Based on the cross-section of the membrane by scanning electron microscopy we suggested that the surface of the 1st step layer was made dense. The 2-step hydrothermal synthesis reduced the synthesis time by a factor of 2 while maintaining a high separation factor for the ethanol-water system.

Key Words: Silicalite; Zeolite; Ethanol permselectivity; Pervaporation; Hydrothermal synthesis

*Corresponding author. Fax: +81A298-61-4674; E-mail: yanagishita-hiroshi@aist.go.jp

INTRODUCTION

Recently, inorganic membranes have been the focus of much attention because they exhibit both high thermal stability and excellent resistance to organic solvents. Zeolite is an inorganic material that is an optimum candidate for being material of a molecular sieving membrane because it has uniform pore size. Silicalite, a type of zeolite, is more hydrophobic than any other zeolite because it has no aluminium inside its structure, and its zeolitic pore size is approximately 6 Å.

First, we prepared zeolite separation membranes that consisted only of silicalite crystals (1). We hydrothermally synthesized a pure silicalite membrane on a porous stainless steel support at 170°C for 48 hours and calcined at 500°C. The silicalite membrane exhibited very high ethanol permselectivity for a 5% (vol) ethanol aqueous solution (2). We then investigated the preparation conditions of silicalite membrane, such as the composition of the starting solution for hydrothermal synthesis and the calcination temperature and period, to prepare the silicalite membrane without cracks and intercrystalline regions. The prepared membrane showed separation factor α (EtOH-H₂O) of 120 with a total flux of 0.29 kg/m²·h for a 5% (vol) aqueous ethanol solution at 30°C (3). However, this synthesis method, in which generation of silicalite seed crystals and their growth occur at one hydrothermal synthesis, requires a long membrane preparation time. Furthermore, the preparation of membranes with high ethanol permselectivity were not highly reproducible. These are disadvantages for industrial manufacturing of silicalite membranes.

In this study, to shorten the period of the hydrothermal synthesis, we prepared silicalite membranes with a 2-step hydrothermal synthesis through the use of 2 synthesis mixtures of different compositions.

EXPERIMENTAL

The silicalite membranes were prepared on porous supports of sintered stainless steel (2 µm) by hydrothermal synthesis (4). The first synthesis was performed at 170°C for 6 to 48 hours with a synthesis solution where the ratio of H₂O to SiO₂ was 60 to 1 in view of crystal generation. After hydrothermal synthesis, the silicalite membrane was washed with distilled water and dried at 100°C for 24 hours. The second synthesis was performed at 170°C for 24 hours with a synthesis solution where the ratio of H₂O to SiO₂ was 90 to 1 or higher in view of crystal growth. After the second synthesis, the membrane was calcined for 60 hours at 375°C (heating rate: 15°C/h) in an electric furnace to remove the organic template.

After the first synthesis, the water permeability of the membranes was measured by ultrafiltration (UF) test, where applied pressure was under 3 kg/cm² by N₂ at room temperature.

After the second synthesis and calcination, the separation performance of the membranes was measured by pervaporation with a stainless steel cell previously developed in our laboratory (5). An ethanol aqueous solution of 5% (vol) was used as a feed at 30°C. The concentrations of permeate and feed were analyzed by gas chromatography. Pervaporation performance of silicalite membranes was evaluated by the separation factor α (EtOH-H₂O) and flux.

Scanning electron microscopy (SEM) observation was performed to characterize the membrane morphology. Special stainless steel supports were prepared for SEM observation so that a cross-section of a membrane with support could be seen.

RESULTS AND DISCUSSION

The generated silicalite grains were considered to be intergrown during the long hydrothermal synthesis period that resulted in a high separation factor α (EtOH-H₂O) of 120 as previously reported (3). In this study, the main purpose of the first synthesis was generating crystals and that of the second synthesis was making the membrane dense.

In the first synthesis the weight (g) of the generated silicalite crystals was increased with an increasing synthesis period. The water permeability of the membrane after the first synthesis decreased with increasing amounts of generated silicalite crystals, and the membrane synthesized for 48 hours shows almost zeros in fluxes. After the first synthesis no membrane could be measured by pervaporation performance because the fluxes were too high.

Table 1 shows the pervaporation performance of silicalite membranes. Silicalite membranes with ethanol permselectivity in pervaporation were success-

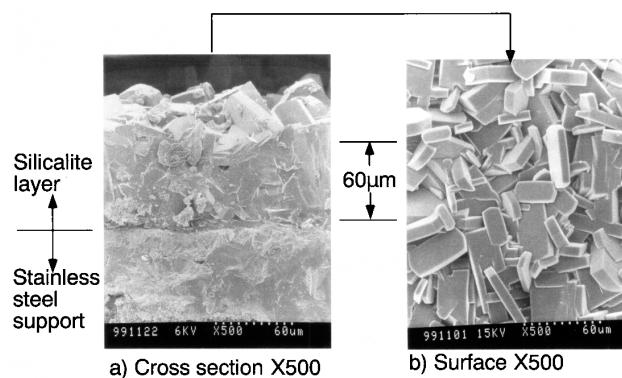
Table 1. Pervaporation Performance of Silicalite Membranes by a 2-Step Hydrothermal Synthesis

Membrane No.	Period of 1st Synthesis (h)	Water Permeability of the Membrane After 1st Synthesis (t/m ² · D · MPa)	Total Flux in Pervaporation (kg/m ² · h)	Ethanol Concentration of Permeate (vol %)	Separation Factor α (EtOH-H ₂ O)
1	24	4.61	—	—	—
2	24	3.85	0.48	25.1	6
3	48	0.33	0.33	78.5	70
4	48	0.00	0.24	82.0	86

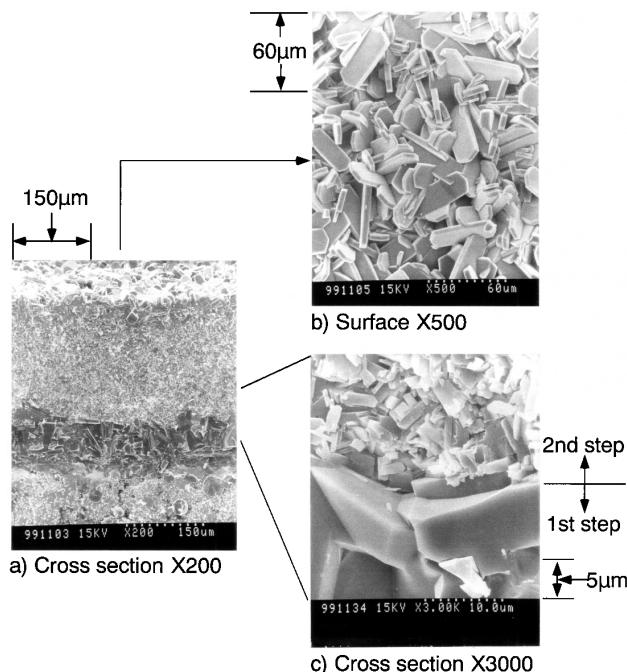
Hydrothermal synthesis conditions at 170°C for 48 hours (1st synthesis), for 24 hours (2nd synthesis). Synthesis solution H₂O/SiO₂ = 60 (1st synthesis), 90 (2nd synthesis).

Water permeability was measured by UF test.

Total flux was measured by pervaporation using a 5% (vol) EtOH aqueous solution at 30°C as a feed.


Flux was too large to measure pervaporation performance.

fully prepared by a 2-step hydrothermal synthesis method. The effect of the membrane compactness after the first synthesis on the pervaporation performance of the membrane after the second synthesis was investigated. The membrane prepared from the high water permeable membrane, as determined by UF test after the first synthesis, showed low ethanol permselectivity in pervaporation because the membrane could not be made dense during the second synthesis. However, the membrane prepared from the membrane with low water permeability (values of near zero by UF test after first synthesis) showed high ethanol permselectivity in pervaporation; the concentration of permeate was about 80% (vol). We concluded that the compactness of the membrane after the first synthesis controls membrane pervaporation performance after the second synthesis.


The effect of the $\text{H}_2\text{O-SiO}_2$ ratio of the second synthesis was investigated. Silicalite membranes with high ethanol permselectivity could be obtained with a $\text{H}_2\text{O-SiO}_2$ ratio of approximately 90–100. However, flux of a membrane synthesized with a $\text{H}_2\text{O-SiO}_2$ solution ratio of 150 for the second synthesis was too high to be measured by pervaporation performance. The silica amount in the mixture with a $\text{H}_2\text{O-SiO}_2$ ratio of 150 was too low to make the membrane dense.

The surface and cross-section of a silicalite membrane were observed by SEM. The photographs of a membrane after the first synthesis are shown in Fig. 1. A membrane consisted of large crystals. Figure 2 shows the photographs of the membrane surface and cross-section after the second synthesis. The membrane prepared by the 2-step hydrothermal synthesis method consisted of 2 layers. A clear boundary between the first synthesis layer and the second synthesis layer was observed. Small silicalite crystals were observed in the second synthesis layer. The sizes of the surface crystals were approximately 10 μm , and no inter-

Figure 1. SEM images of the surface and the cross-section of the silicalite membrane on a stainless steel support after first synthesis. The hydrothermal synthesis condition was 170°C for 48 hours, and the synthesis solution was $\text{H}_2\text{O/SiO}_2 = 60$.

Figure 2. SEM images of the silicalite membrane surface and cross-section on stainless steel support after the second synthesis. The hydrothermal synthesis condition was at 170°C for 48 hours (first synthesis) and 24 hours (second synthesis), and the synthesis solution was $\text{H}_2\text{O}/\text{SiO}_2 = 60$ (first synthesis) and 100 (second synthesis).

grown layer could be observed. Based on the SEM photographs, we suggest that the formation process of silicalite membrane is as follows: In the first synthesis, silicalite crystals generate on the stainless steel support. We believe that, because it could not be measured by pervaporation, in this step the membrane was not dense. During the second synthesis, many small crystals fell out of the bulk mixture. Because no intergrown layer could be observed in the second step layer and the membrane after the first synthesis did not show pervaporation performance, we suggest that the surface of first step layer was made dense by both the intergrowth of silicalite grains and the deposition of small silicalite crystals from the bulk mixture during the second synthesis.

From the above results, we concluded that through the 2-step hydrothermal synthesis method, the synthesis period was reduced to one-half (72 h) that previously reported (3). Furthermore, reproducibility was improved because the compactness of the membrane after the first synthesis could be estimated.

REFERENCES

1. Sano T.; Yanagishita H.; Kiyozumi Y.; Kitamoto D.; Mizukami F. Separation of Ethanol/Water Mixture by Silicalite Membrane. *Chem. Lett.* **1992**; (12), 2413.
2. Sano T.; Yanagishita H.; Kiyozumi Y.; Mizukami F.; Haraya K. Separation of Ethanol/Water Mixture by Silicalite Membrane on Pervaporation. *J. Memb. Sci.* **1994**, 95 (3), 221.
3. Matsuda H.; Yanagishita H.; Kitamoto D.; Nakane T.; Haraya K.; Koura N.; Sano T. Preparation of Silicalite Pervaporation Membrane with High Ethanol Permselectivity. *Membrane* **1998**, 23 (5), 259.
4. Jie M.D.; Chen B.; Noble R.D.; Falconer J.L. Ceramic-Zeolite Composite Membranes and Their Application for Separation of Vapor/Gas Mixtures. *J. Memb. Sci.* **1994**, 90 (1/2), 1.
5. Yanagishita H.; Maejima C.; Kitamoto D.; Nakane T. Preparation of Asymmetric Polyimide Membrane for Water/Ethanol Separation in Pervaporation by the Phase Inversion Process. *J. Memb. Sci.* **1994**, 86 (2), 231.

Received August 2000

Revised January 2001

Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/Reprints Here" link below and follow the instructions. Visit the [U.S. Copyright Office](#) for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on [Fair Use in the Classroom](#).

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our [Website User Agreement](#) for more details.

Order now!

Reprints of this article can also be ordered at
<http://www.dekker.com/servlet/product/DOI/101081SS100107904>